14 research outputs found

    REDAffectiveLM: Leveraging Affect Enriched Embedding and Transformer-based Neural Language Model for Readers' Emotion Detection

    Full text link
    Technological advancements in web platforms allow people to express and share emotions towards textual write-ups written and shared by others. This brings about different interesting domains for analysis; emotion expressed by the writer and emotion elicited from the readers. In this paper, we propose a novel approach for Readers' Emotion Detection from short-text documents using a deep learning model called REDAffectiveLM. Within state-of-the-art NLP tasks, it is well understood that utilizing context-specific representations from transformer-based pre-trained language models helps achieve improved performance. Within this affective computing task, we explore how incorporating affective information can further enhance performance. Towards this, we leverage context-specific and affect enriched representations by using a transformer-based pre-trained language model in tandem with affect enriched Bi-LSTM+Attention. For empirical evaluation, we procure a new dataset REN-20k, besides using RENh-4k and SemEval-2007. We evaluate the performance of our REDAffectiveLM rigorously across these datasets, against a vast set of state-of-the-art baselines, where our model consistently outperforms baselines and obtains statistically significant results. Our results establish that utilizing affect enriched representation along with context-specific representation within a neural architecture can considerably enhance readers' emotion detection. Since the impact of affect enrichment specifically in readers' emotion detection isn't well explored, we conduct a detailed analysis over affect enriched Bi-LSTM+Attention using qualitative and quantitative model behavior evaluation techniques. We observe that compared to conventional semantic embedding, affect enriched embedding increases ability of the network to effectively identify and assign weightage to key terms responsible for readers' emotion detection

    Fairness in Unsupervised Learning

    No full text
    Data in digital form is expanding at an exponential rate, far outpacing any chance of getting any significant fraction labelled manually. This has resulted in heightened research emphasis on unsupervised learning, learning in the absence of labels. In fact, unsupervised learning has been often dubbed as the next frontier of AI. Unsupervised learning is the most plausible model to analyze the bulk of passively collected data that spans across various domains; e.g., social media footprints, safety/surveilance cameras, IoT devices, sensors, smartphone apps, medical wearables, traffic sensing devices and public wi-fi access. While fairness in supervised learning, such as classification tasks, has inspired a large amount of research in the past few years, work on fair unsupervised learning has been relatively slow in picking up. This tutorial targets to provide an overview of: (i) fairness issues in unsupervised learning drawing abundantly from political philosophy, (ii) current research in fair unsupervised learning, and (iii) new directions to extend the state-of-the-art in fair unsupervised learning. While we intend to broadly cover all tasks in unsupervised learning, our focus will be on clustering, retrieval and representation learning. In a unique departure from conventional data science tutorials, we will place significant emphasis on presenting and debating pertinent literature from ethics and philosophy. Overall, this half-day tutorial brings a strong emphasis on ensuring strong interdisciplinarity

    CLEVR-Math : A Dataset for Compositional Language, Visual and Mathematical Reasoning

    No full text
    We introduce CLEVR-Math, a multi-modal math word problems dataset consisting of simple math word problems involving addition/subtraction, represented partly by a textual description and partly by an image illustrating the scenario. The text describes actions performed on the scene that is depicted in the image. Since the question posed may not be about the scene in the image, but about the state of the scene before or after the actions are applied, the solver envision or imagine the state changes due to these actions. Solving these word problems requires a combination of language, visual and mathematical reasoning. We apply state-of-the-art neural and neuro-symbolic models for visual question answering on CLEVR-Math and empirically evaluate their performances. Our results show how neither method generalise to chains of operations. We discuss the limitations of the two in addressing the task of multi-modal word problem solving

    CLEVR-Math : A Dataset for Compositional Language, Visual and Mathematical Reasoning

    No full text
    We introduce CLEVR-Math, a multi-modal math word problems dataset consisting of simple math word problems involving addition/subtraction, represented partly by a textual description and partly by an image illustrating the scenario. The text describes actions performed on the scene that is depicted in the image. Since the question posed may not be about the scene in the image, but about the state of the scene before or after the actions are applied, the solver envision or imagine the state changes due to these actions. Solving these word problems requires a combination of language, visual and mathematical reasoning. We apply state-of-the-art neural and neuro-symbolic models for visual question answering on CLEVR-Math and empirically evaluate their performances. Our results show how neither method generalise to chains of operations. We discuss the limitations of the two in addressing the task of multi-modal word problem solving

    Comparison of Statistical and Semantic Similarity Techniques for Paraphrase Identification

    No full text
    This paper compares statistical technique of paraphrase identification to semantic technique of paraphrase identification. The statistical techniques used for comparison are word set and word-order based methods where as the semantic technique used is the WordNet similarity matrix method described by Stevenson and Fernando in [3].Cochin University Of Science And Technology2012 International Conference on Data Science & Engineering (ICDSE

    CLEVR-Math : A Dataset for Compositional Language, Visual and Mathematical Reasoning

    No full text
    We introduce CLEVR-Math, a multi-modal math word problems dataset consisting of simple math word problems involving addition/subtraction, represented partly by a textual description and partly by an image illustrating the scenario. The text describes actions performed on the scene that is depicted in the image. Since the question posed may not be about the scene in the image, but about the state of the scene before or after the actions are applied, the solver envision or imagine the state changes due to these actions. Solving these word problems requires a combination of language, visual and mathematical reasoning. We apply state-of-the-art neural and neuro-symbolic models for visual question answering on CLEVR-Math and empirically evaluate their performances. Our results show how neither method generalise to chains of operations. We discuss the limitations of the two in addressing the task of multi-modal word problem solving

    CLEVR-Math : A Dataset for Compositional Language, Visual and Mathematical Reasoning

    No full text
    We introduce CLEVR-Math, a multi-modal math word problems dataset consisting of simple math word problems involving addition/subtraction, represented partly by a textual description and partly by an image illustrating the scenario. The text describes actions performed on the scene that is depicted in the image. Since the question posed may not be about the scene in the image, but about the state of the scene before or after the actions are applied, the solver envision or imagine the state changes due to these actions. Solving these word problems requires a combination of language, visual and mathematical reasoning. We apply state-of-the-art neural and neuro-symbolic models for visual question answering on CLEVR-Math and empirically evaluate their performances. Our results show how neither method generalise to chains of operations. We discuss the limitations of the two in addressing the task of multi-modal word problem solving

    Distributed Representations for Arithmetic Word Problems

    No full text
    We consider the task of learning distributed representations for arithmetic word problems. We outline the characteristics of the domain of arithmetic word problems that make generic text embedding methods inadequate, necessitating a specialized representation learning method to facilitate the task of retrieval across a wide range of use cases within online learning platforms. Our contribution is two-fold; first, we propose several 'operators' that distil knowledge of the domain of arithmetic word problems and schemas into word problem transformations. Second, we propose a novel neural architecture that combines LSTMs with graph convolutional networks to leverage word problems and their operator-transformed versions to learn distributed representations for word problems. While our target is to ensure that the distributed representations are schema-aligned, we do not make use of schema labels in the learning process, thus yielding an unsupervised representation learning method. Through an evaluation on retrieval over a publicly available corpus of word problems, we illustrate that our framework is able to consistently improve upon contemporary generic text embeddings in terms of schema-alignment
    corecore